Main Article Content

Bangkit Indarmawan Nugroho
Muhammad Farkhan
Sawaviyya Anandianskha
Gunawan Gunawan

Abstract

This study examines the application of the Simple Moving Average (SMA) and Analytic Hierarchy Process (AHP) methods to predict tidal flood vulnerability in Tegal City. The objective is to develop a more accurate prediction method for tidal flood vulnerability. The methods used are a combination of SMA and AHP. The results indicate that this combination is effective in producing more accurate predictions compared to conventional methods. Villages such as Muarareja, Tegalsari, Mintaragen, and Panggung have been identified as highly vulnerable and require more intensive mitigation. The implications highlight the importance of a multi-method approach to understanding complex phenomena like flood vulnerability. For future research, it is recommended to integrate real-time weather data and consider socio-economic factors to enhance accuracy and relevance in disaster mitigation. The findings are expected to assist in better urban planning and resource allocation, as well as improve community resilience against tidal flood disasters.

Downloads

Download data is not yet available.

Article Details

How to Cite
Nugroho, B. I. ., Farkhan, M. ., Anandianskha, S. ., & Gunawan, G. (2024). Application of sma method and ahp to predict the level of tidal flood vulnerability in Tegal City. Journal of Intelligent Decision Support System (IDSS), 7(2), 102-112. https://doi.org/10.35335/idss.v7i2.235
References
Ali, S. A., Parvin, F., Vojteková, J., Costache, R., Linh, N. T. T., Pham, Q. B., Vojtek, M., Gigović, L., Ahmad, A., & Ghorbani, M. A. (2021). GIS-based landslide susceptibility modeling: A comparison between fuzzy multi-criteria and machine learning algorithms. Geoscience Frontiers, 12(2), 857–876.
Antwi-Agyakwa, K. T., Afenyo, M. K., & Angnuureng, D. B. (2023). Know to predict, forecast to warn: a review of flood risk prediction tools. Water, 15(3), 427.
Boukerche, A., & Wang, J. (2020). Machine learning-based traffic prediction models for intelligent transportation systems. Computer Networks, 181, 107530.
Buchori, I., Pramitasari, A., Pangi, P., Sugiri, A., Maryono, M., Basuki, Y., & Sejati, A. W. (2021). Factors distinguishing the decision to migrate from the flooded and inundated community of Sayung, Demak: A suburban area of Semarang City, Indonesia. International Journal of Disaster Risk Reduction, 52, 101946.
Ciampa, F., Seifollahi-Aghmiuni, S., Kalantari, Z., & Ferreira, C. S. S. (2021). Flood mitigation in Mediterranean coastal regions: Problems, solutions, and stakeholder involvement. Sustainability, 13(18), 10474.
Coffey, L., & Claudio, D. (2021). In defense of group fuzzy AHP: A comparison of group fuzzy AHP and group AHP with confidence intervals. Expert Systems with Applications, 178, 114970.
Dedekorkut-Howes, A., Torabi, E., & Howes, M. (2020). When the tide gets high: A review of adaptive responses to sea level rise and coastal flooding. Journal of Environmental Planning and Management, 63(12), 2102–2143.
Enríquez, A. R., Wahl, T., Baranes, H. E., Talke, S. A., Orton, P. M., Booth, J. F., & Haigh, I. D. (2022). Predictable changes in extreme sea levels and coastal flood risk due to long‐term tidal cycles. Journal of Geophysical Research: Oceans, 127(4), e2021JC018157.
Feloni, E., Mousadis, I., & Baltas, E. (2020). Flood vulnerability assessment using a GIS‐based multi‐criteria approach—The case of Attica region. Journal of Flood Risk Management, 13, e12563.
Fitriyani, N. L., Syafrudin, M., Alfian, G., & Rhee, J. (2020). HDPM: an effective heart disease prediction model for a clinical decision support system. IEEE Access, 8, 133034–133050.
Hughes, M. G., Glasby, T. M., Hanslow, D. J., West, G. J., & Wen, L. (2022). Random forest classification method for predicting intertidal wetland migration under sea level rise. Frontiers in Environmental Science, 10, 749950.
Knoth, S., Tercero‐Gómez, V. G., Khakifirooz, M., & Woodall, W. H. (2021). The impracticality of homogeneously weighted moving average and progressive mean control chart approaches. Quality and Reliability Engineering International, 37(8), 3779–3794.
Li, S., Wahl, T., Talke, S. A., Jay, D. A., Orton, P. M., Liang, X., Wang, G., & Liu, L. (2021). Evolving tides aggravate nuisance flooding along the US coastline. Science Advances, 7(10), eabe2412.
Liu, Y., Eckert, C. M., & Earl, C. (2020). A review of fuzzy AHP methods for decision-making with subjective judgements. Expert Systems with Applications, 161, 113738.
Merz, B., Kuhlicke, C., Kunz, M., Pittore, M., Babeyko, A., Bresch, D. N., Domeisen, D. I. V, Feser, F., Koszalka, I., & Kreibich, H. (2020). Impact forecasting to support emergency management of natural hazards. Reviews of Geophysics, 58(4), e2020RG000704.
Park, S.-J., & Lee, D.-K. (2020). Prediction of coastal flooding risk under climate change impacts in South Korea using machine learning algorithms. Environmental Research Letters, 15(9), 094052.
Pereira, J., Simpkin, A. J., Hartmann, M. D., Rigden, D. J., Keegan, R. M., & Lupas, A. N. (2021). High‐accuracy protein structure prediction in CASP14. Proteins: Structure, Function, and Bioinformatics, 89(12), 1687–1699.
Rahman, B., Karmilah, M., Kautsary, J., & Ridlo, M. A. (2021). THE TIDAL FLOODING CAUSES IN THE NORTH COAST OF CENTRAL JAVA: A SYSTEMIC LITERATURE REVIEW. Journal of Southwest Jiaotong University, 56(6).
Rudiarto, I., & Pamungkas, D. (2020). Spatial exposure and livelihood vulnerability to climate-related disasters in the North Coast of Tegal City, Indonesia. International Review for Spatial Planning and Sustainable Development, 8(3), 34–53.
Rusdiana, S., Yuni, S. M., & Khairunnisa, D. (2020). Comparison of Rainfall Forecasting in Simple Moving Average (SMA) and Weighted Moving Average (WMA) Methods (Case Study at Village of Gampong Blang Bintang, Big Aceh District-Sumatera-Indonesia. Journal of Research in Mathematics Trends and Technology, 2(1), 21–27.
Saputra, N. A., Perwira, A., Tarigan, M., & Nusa, A. B. (2020). Penggunaan Metode AHP dan GIS Untuk Zonasi Daerah Rawan Banjir Rob di Wilayah Medan Utara. In Media Komunikasi Teknik Sipil (Vol. 26, Issue 1). https://doi.org/10.14710/mkts.v26i1.26211
Sato, Y., & Tan, K. H. (2023). Inconsistency indices in pairwise comparisons: an improvement of the Consistency Index. Annals of Operations Research, 326(2), 809–830.
Sitorus, Z., Hariyanto, E., & Kurniawan, F. (2023). Analysis of Artificial Intelligence Machine Learning Technology for Mapping and Predicting Flood Locations in Pahlawan Batu Bara Village. International Journal Of Computer Sciences and Mathematics Engineering, 2(2), 281–288.
Sutrisno, D., Rahadiati, A., Rudiastuti, A. W., Dewi, R. S., & Munawaroh. (2020). Urban coastal flood-prone mapping under the combined impact of tidal wave and heavy rainfall: a proposal to the existing national standard. ISPRS International Journal of Geo-Information, 9(9), 525.
Tredennick, A. T., Hooker, G., Ellner, S. P., & Adler, P. B. (2021). A practical guide to selecting models for exploration, inference, and prediction in ecology. Ecology, 102(6), e03336.
Valsamos, G., Larcher, M., & Casadei, F. (2021). Beirut explosion 2020: A case study for a large-scale urban blast simulation. Safety Science, 137, 105190.
Wirayudaa, I. K. A. K., Nuarsa, I. W., & Putra, I. D. N. N. (2020). Pemetaan Potensi Kerawanan Banjir Rob di Kabupaten Gianyar. JOURNAL OF MARINE RESEARCH AND TECHNOLOGY, 3(2), 94–101. https://doi.org/10.24843/JMRT.2020.v03.i02.p06
Wu, T. (2021). Quantifying coastal flood vulnerability for climate adaptation policy using principal component analysis. Ecological Indicators, 129, 108006.