Main Article Content

Wahu Abi Hurairah
Aang Alim Mmurtopo
Nurul Fadilah

Abstract

The process of classifying images of different vehicles is an interestingchallenge for research. The process of classifying different vehiclesis widely used in various things such as electronic ticketing, e-parking andother fields. One method often used in the classification process is the Convolutional Neural Network (CNN) method. The CNN method is widely used toperform the classification process because it has been tested and proven to beeffective in image processing and pattern recognition. By classifying differentvehicles, CNN can automatically extract features from image data and detect complexpatterns. The CNN method provides high efficiency and accuracy in classifyingvarious vehicles for various practical applications such astraffic management and license plate recognition systems. The studyperformed motor vehicle image recognition by determiningthe types of two-wheeled vehicles (motorcycles) and 4-wheeled vehicles (cars) using a combination of Otsu threshold and CNN method. From the results of the research, two types of vehicles can be well identified, showing the confidence level of the classification process. of.).

Downloads

Download data is not yet available.

Article Details

How to Cite
Hurairah, W. A., Mmurtopo, A. A. ., & Fadilah, N. . (2024). Introduction to types of motorized vehicles based on shape and model using convolutional neural network based on digital images. Journal of Intelligent Decision Support System (IDSS), 7(2), 197-202. https://doi.org/10.35335/idss.v7i2.225
References
Amwin, A., & Rani, S. (2020). Kajian Literatur Metode Pendeteksian dan Pengenalan Kendaraan Berdasarkan Citra Digital. 13(2), 223–228.
Cahyono, A. P., & Budiyanto, U. (2020). Penghitungan Objek Berdasarkan Berdasarkan Jenis Kendaraan Bermotor pada CCTV Lalu Lintas Berbasis Pengolahan Citra Digital Menggunakan Metode Background Subtraction dan Blob Detection. JTIM : Jurnal Teknologi Informasi Dan Multimedia, 2(2), 92–99. https://doi.org/10.35746/jtim.v2i2.98
Dwi Nugraha, J., Budiono, A., & Almaarif, A. (2019). Analisis Malware Berdasarkan Api Call Memory Dengan Metode Deteksi Signature-Based Malware Alaysis Based on Call Memory Api With Signature-Based Detection Method. 6(2), 7820–7827.
Fadlia, N., & Kosasih, R. (2019). Klasifikasi Jenis Kendaraan Menggunakan Metode Convolutional Neural Network (Cnn). Jurnal Ilmiah Teknologi Dan Rekayasa, 24(3), 207–215. https://doi.org/10.35760/tr.2019.v24i3.2397
Fasounaki, M., Yüce, E. B., Öncül, S., & Ince, G. (2021). CNN-based Text-independent Automatic Speaker Identification Using Short Utterances. Proceedings - 6th International Conference on Computer Science and Engineering, UBMK 2021, 01, 413–418. https://doi.org/10.1109/UBMK52708.2021.9559031
Manajemen, A., Teknologi, R., Pada, I., Jakarta, P. T., Menggunakan, N., & Iso, F. (2024). Scientica Scientica. 2, 126–138.
Nugroho, B., & Puspaningrum, E. Y. (2021). Kinerja Metode CNN untuk Klasifikasi Pneumonia dengan Variasi Ukuran Citra Input. Jurnal Teknologi Informasi Dan Ilmu Komputer, 8(3), 533–538. https://doi.org/10.25126/jtiik.2021834515
Peryanto, A., Yudhana, A., & Umar, R. (2020). Rancang Bangun Klasifikasi Citra Dengan Teknologi Deep Learning Berbasis Metode Convolutional Neural Network. Format : Jurnal Ilmiah Teknik Informatika, 8(2), 138. https://doi.org/10.22441/format.2019.v8.i2.007
Prasetyo, M. E., Faza, M. R., Pratama, R., Alhabsy, S. N. H., Purwanti, H., & Masa, A. P. A. (2023). Klasifikasi Ragam Kendaraan Menggunakan Metode Convolutional Neural Network (Cnn). Adopsi Teknologi Dan Sistem Informasi (ATASI), 2(2), 142–148. https://doi.org/10.30872/atasi.v2i2.1156
Radikto, Mulyana, D. I., Rofik, M. A., & Zakaria, Mo. Z. Z. (2022). Klasifikasi Kendaraan pada Jalan Raya menggunakan Algoritma Convolutional Neural Network ( CNN ). Jurnal Pendidikan Tambusai, 6(1), 1668–1679.
Rahmadhani, U. S., & Marpaung, N. L. (2023). Klasifikasi Jamur Berdasarkan Genus Dengan Menggunakan Metode CNN. Jurnal Informatika: Jurnal Pengembangan IT, 8(2), 169–173. https://doi.org/10.30591/jpit.v8i2.5229
Rahman, S., Titania, A., Sembiring, A., Khairani, M., & Lubis, Y. F. A. (2022). Analisis Klasifikasi Mobil Pada Gardu Tol Otomatis (GTO) Menggunakan Convolutional Neural Network (CNN). Explorer, 2(2), 54–60. https://doi.org/10.47065/explorer.v2i2.286
Taufiq, T. (2021). Deteksi Rasa Kantuk pada Pengendara Kendaraan Bermotor Berbasis Pengolahan Citra Digital. Jurnal Teknologi Terapan and Sains 4.0, 2(1), 403. https://doi.org/10.29103/tts.v2i1.3850
Yedidiya, N., Mendrofa, S., Mahfuzie, A., Faisal, M., Haidar, A., & Rosyani, P. (2023). Nisan Yedidiya Sorayana Mendrofa | https PERBANDINGAN METODE YOLO DAN FAST R-CNN DALAM SISTEM DETEKSI PENGENALAN KENDARAAN. JRIIN : Jurnal Riset Informatika Dan Inovasi, 1(2), 431–436.
Amwin, A., & Rani, S. (2020). Kajian Literatur Metode Pendeteksian dan Pengenalan Kendaraan Berdasarkan Citra Digital. 13(2), 223–228.
Cahyono, A. P., & Budiyanto, U. (2020). Penghitungan Objek Berdasarkan Berdasarkan Jenis Kendaraan Bermotor pada CCTV Lalu Lintas Berbasis Pengolahan Citra Digital Menggunakan Metode Background Subtraction dan Blob Detection. JTIM : Jurnal Teknologi Informasi Dan Multimedia, 2(2), 92–99. https://doi.org/10.35746/jtim.v2i2.98
Dwi Nugraha, J., Budiono, A., & Almaarif, A. (2019). Analisis Malware Berdasarkan Api Call Memory Dengan Metode Deteksi Signature-Based Malware Alaysis Based on Call Memory Api With Signature-Based Detection Method. 6(2), 7820–7827.
Fadlia, N., & Kosasih, R. (2019). Klasifikasi Jenis Kendaraan Menggunakan Metode Convolutional Neural Network (Cnn). Jurnal Ilmiah Teknologi Dan Rekayasa, 24(3), 207–215. https://doi.org/10.35760/tr.2019.v24i3.2397
Fasounaki, M., Yüce, E. B., Öncül, S., & Ince, G. (2021). CNN-based Text-independent Automatic Speaker Identification Using Short Utterances. Proceedings - 6th International Conference on Computer Science and Engineering, UBMK 2021, 01, 413–418. https://doi.org/10.1109/UBMK52708.2021.9559031
Manajemen, A., Teknologi, R., Pada, I., Jakarta, P. T., Menggunakan, N., & Iso, F. (2024). Scientica Scientica. 2, 126–138.
Nugroho, B., & Puspaningrum, E. Y. (2021). Kinerja Metode CNN untuk Klasifikasi Pneumonia dengan Variasi Ukuran Citra Input. Jurnal Teknologi Informasi Dan Ilmu Komputer, 8(3), 533–538. https://doi.org/10.25126/jtiik.2021834515
Peryanto, A., Yudhana, A., & Umar, R. (2020). Rancang Bangun Klasifikasi Citra Dengan Teknologi Deep Learning Berbasis Metode Convolutional Neural Network. Format : Jurnal Ilmiah Teknik Informatika, 8(2), 138. https://doi.org/10.22441/format.2019.v8.i2.007
Prasetyo, M. E., Faza, M. R., Pratama, R., Alhabsy, S. N. H., Purwanti, H., & Masa, A. P. A. (2023). Klasifikasi Ragam Kendaraan Menggunakan Metode Convolutional Neural Network (Cnn). Adopsi Teknologi Dan Sistem Informasi (ATASI), 2(2), 142–148. https://doi.org/10.30872/atasi.v2i2.1156
Radikto, Mulyana, D. I., Rofik, M. A., & Zakaria, Mo. Z. Z. (2022). Klasifikasi Kendaraan pada Jalan Raya menggunakan Algoritma Convolutional Neural Network ( CNN ). Jurnal Pendidikan Tambusai, 6(1), 1668–1679.
Rahmadhani, U. S., & Marpaung, N. L. (2023). Klasifikasi Jamur Berdasarkan Genus Dengan Menggunakan Metode CNN. Jurnal Informatika: Jurnal Pengembangan IT, 8(2), 169–173. https://doi.org/10.30591/jpit.v8i2.5229
Rahman, S., Titania, A., Sembiring, A., Khairani, M., & Lubis, Y. F. A. (2022). Analisis Klasifikasi Mobil Pada Gardu Tol Otomatis (GTO) Menggunakan Convolutional Neural Network (CNN). Explorer, 2(2), 54–60. https://doi.org/10.47065/explorer.v2i2.286
Taufiq, T. (2021). Deteksi Rasa Kantuk pada Pengendara Kendaraan Bermotor Berbasis Pengolahan Citra Digital. Jurnal Teknologi Terapan and Sains 4.0, 2(1), 403. https://doi.org/10.29103/tts.v2i1.3850
Yedidiya, N., Mendrofa, S., Mahfuzie, A., Faisal, M., Haidar, A., & Rosyani, P. (2023). Nisan Yedidiya Sorayana Mendrofa | https PERBANDINGAN METODE YOLO DAN FAST R-CNN DALAM SISTEM DETEKSI PENGENALAN KENDARAAN. JRIIN : Jurnal Riset Informatika Dan Inovasi, 1(2), 431–436.