Main Article Content

Fadhila Fadhila
Penda Sudarto Hasugian

Abstract

Fresh vegetables, fruits and fresh meat are one of the basic needs for human life. The need for fresh vegetables, fruits and meat is one of the most important factors for buyers before making a purchase transaction. Likewise with the needs of fresh vegetables, fruit and meat needed by restaurants, cafes, hospitals, hotels and so on. With the increasing number of requests from customers for the needs of fresh vegetables, fruit and meat, companies engaged in the supply and sale of these necessities need to record sales transactions so that there are no stock vacancies and excess stock of goods. Therefore, companies must be more careful in providing fresh vegetables, fruits and meat which are in great demand, so it needs a data processing in the form of data mining using the C4.5 algorithm. In this study, the predicted sales transactions are the last three months of January, February and March 2021. Then for the sales prediction criteria used are in the form of price, type of goods, type of unit and month of sale so that from these criteria can be obtained sales transactions that are selling or not selling. Data mining is a process of mining important information from a very large data. While the C4.5 algorithm is a data classification that has numeric and categorical attributes, where the results of the classification process in the form of rules can be used to predict the value of discrete type attributes from new records. The system was built using the PHP programming language and MySQL as the database. This study obtained predictive results which were implemented in the form of a decision tree, namely the category of types of vegetables belonging to the best-selling sales transactions.

Downloads

Download data is not yet available.

Article Details

How to Cite
Fadhila, F., & Hasugian, P. S. . (2022). The Application of C4.5 Algorithm to Prediction Sales at PT. Sumber Sayur Segar. Journal of Intelligent Decision Support System (IDSS), 5(1), 10-19. https://doi.org/10.35335/idss.v5i1.45
References
Anggraini, S., Defit, S., & Nurcahyo, G. W. (2018). Analisis Data Mining Penjualan Ban Menggunakan Algoritma C4. 5. Jurnal Ilmu Teknik Elektro Komputer Dan Informatika (JITEKI), 4(2), 136.
Azwanti, N. (2018). Analisa Algoritma C4. 5 Untuk Memprediksi Penjualan Motor Pada Pt. Capella Dinamik Nusantara Cabang Muka Kuning. Inform. Mulawarman J. Ilm. Ilmu Komput, 13(1), 33.
Dewi, K. R., & Mauladi, K. F. (2020). Analisa Algoritma C4. 5 untuk Prediksi Penjualan Obat Pertanian di Toko Dewi Sri. Prosiding SEMNAS INOTEK (Seminar Nasional Inovasi Teknologi), 4(3), 109–114.
Dongoran, N. S. (2019). PENERAPAN ALGORITMA APRIORI DAN ECONOMIC ORDER QUANTITY UNTUK PENGENDALIAN PERSEDIAN PRODUK DI ALMIRA KIDS. Universitas Islam Negeri Sultan Syarif Kasim Riau.
Effendi, M. M., & Rahmawati, D. (2019). Prediksi Penjualan Produk Roti Menggunakan Algoritma C4. 5 Pada PT. Prima Top Boga. Jurnal SIGMA, 9(1), 51–66.
Eska, J. (2018). Penerapan Data Mining Untuk Prediksi Penjualan Wallpaper Menggunakan Algoritma C4. 5.
Fikri, A., & Verina, W. (2021). PENERAPAN DATA MINING UNTUK PREDIKSI PENJUALAN ALAT MEDIS MENGGUNAKAN ALGORITMA C4. 5 PT. MURNI INDAH SENTOSA. INFOSYS (INFORMATION SYSTEM) JOURNAL, 5(1), 70–83.
Hendra, H. (2020). Penerapan Data Mining untuk Prediksi Penjualan Readymix Menggunakan Metode Algoritma C4. 5 pada PT Remicon Widyaprima. Prodi Sistem Informasi.
Lubis, M. R. (2019). Analisa Prediksi Penjualan Produk Dengan Menggunakan Metode C4. 5 (Studi Kasus: PT. Kawan Lama Ace Hardware). JURIKOM (Jurnal Riset Komputer), 6(5), 545–549.
Putri, R. P. S., & Waspada, I. (2018). Penerapan Algoritma C4. 5 pada Aplikasi Prediksi Kelulusan Mahasiswa Prodi Informatika. Khazanah Informatika: Jurnal Ilmu Komputer Dan Informatika, 4(1), 1–7.
Shiddiq, A., Niswatin, R. K., & Farida, I. N. (2018). Ahmad Shiddiq Analisa Kepuasan Konsumen Menggunakan Klasifikasi Decision Tree Di Restoran Dapur Solo (Cabang Kediri). Generation Journal, 2(1), 9–18.