Main Article Content

Leliana Harahap
Sartika Dewi Purba
Sutrisno Situmorang
Jonas Franky R Panggabean
Kamson Sirait

Abstract

The Medicom campus is a place of work that provides jobs to the community. In work, employee status cannot be separated, namely permanent employees and contract employees. In employee status, employee salaries can be determined. In determining employee salaries, there are several problems that can disrupt employee performance at work. For this reason, a method is needed to determine employee salaries. One method that can be used is the K-Means Clustering Algorithm. Which is considered quite effective in determining the suitability of salaries for permanent employees and contract employees. By creating clusters to make it easier for finance workers to record and determine and adjust employee salaries based on their status.

Downloads

Download data is not yet available.

Article Details

How to Cite
Harahap, L., Purba, S. D. ., Situmorang, S. ., Panggabean, J. F. R. ., & Sirait, K. (2023). Analysis Of Salary Of Permanent Employees And Contract Employees On The Medicom Campus Using The K – Means Algorithm. Journal of Intelligent Decision Support System (IDSS), 6(4), 231-240. https://doi.org/10.35335/idss.v6i4.168
References
Adani, M. R. (2021). Mengenal Konsep Data Mining Beserta Contoh Implementasinya.
Ansari, T. H. (2019). An analysis of MapReduce efficiency in document clustering using parallel K-means algorithm. Futur. Comput. Informatics J, 1-10.
Arifin, M. (2020). Peran Lingkungan Kerja, Kemampuan Kerja, Dan Karakteristik Individu Terhadap Kinerja Karyawan Pada Pt. Buana Finance Tbk. Cabang Manado. Jurnal EMBA: Jurnal Riset Ekonomi, Manajemen, Bisnis Dan Akuntansi, 31-40.
Butarbutar, N. e. (2019). Komparasi Kinerja Algoritma Fuzzy C-Means Dan K-Means Dalam Pengelompokan Data Siswa Berdasarkan Prestasi Nilaiakademik Siswa. Jurasik (Jurnal Riset Sistem Informasi & Teknik Informatika), 46-55.
Firdaus, D. (2019). Penggunaan Data Mining dalam Kegiatan Sistem Pembelajaran Berbantuan Komputer . Jurnal Format Volume 6.
Gullo, F. (2018). From patterns in data to knowledge discovery: What data mining can do. Phys. Procedia.
Gurunescu, F. (2017). Data Mining Consepts, Models and Techniques. Verlag Berlin Heidelberg.
Mubarok, M. I. (2019). Algoritma C4.5.
N. Nidheesh, K. A. (2018). An enhanced deterministic K-Means clustering algorithm for cancer subtype prediction from gene expression data. Comput. Biol. Med, 213-221.
N. Y. S. Munti, G. W. (2019). Analisis Dan Penerapan Data Mining Untuk Menentukan Gaji Karyawan Tetap Dan Karyawan Kontrak Menggunakan Algoritma K-Means Clustering. JITI.
Nurhayati. (2018). Metode Rough Set untuk melihat perilaku suami yang menjadi akseptor KB vasetomi. Jurnal Teknologi dan Sistem Informasi Ramesh Singh Yadava1.
Putri, R. U. (2020). Kemampuan Kerja Karyawan dan Tunjangan Kesejahteraan Terhadap Prestasi Kerja Karyawan Pada Bengkel Betawi Diesel. Mabiska Jurnal, 1-15.
R. Mythily, A. B. (2021). Clustering models for data stream mining. Procedia Comput. Sci, 619–626.
Rajagopal, S. (2019). Customer data Clustering using data mining technique. Enterprise DW/BI Consultant Tata Consultancy Services.
Rustam, S. (2020). Penerapan Optimasi Jumlah Kluster Pada K-Means Untuk Pengelompokan Kelas Mata Kuliah Konsentrasi Mahasiswa Semester Akhir. Jurnal Sistem Informasi dan Teknik Komputer.
Sulastri H, G. A. (2021). Penerapan Data Mining Dalam Pengelompokan Penderita Thalassaemia. Jurnal Teknologi dan Sistem Informasi, 299-305.
Syafnidawaty. (2020). K-MEANS CLUSTERING.
Tagarelli, A. A. (2018). Data Mining: Clustering. Ref. Modul. Life Sci.
Vaghela, N. M. (2019). Survey on Different Density Based Algorithms on Spatial Dataset. International Journal of Advance Research in Computer Science and Management .